
6/24/16 Real_Space_Modeling_Help_v0.1.ihf 1

• Real-Space Modeling of SANS Data
FEB 2012 SRK

MAR 2014 SRK

This help file provides instructions for how to use the beta operations available to calculate 
the scattering from arbitrary shaped objects, as defined in real space. There is a sction that 
describes the general theory and operation of the macros, then many sections that are 
examples of the macros in use. These sections are also verification of the correct operation of 
the various methods to calculate the intensity. Be warned that the operations presented here 
are in the beta stage. Every attempt has been made to make sure that the calculations are 
fundamentally correct. The user interface and features available are crude and will be 
improved with user feedback. Be warned that some of the calculations can be very slow. I 
have tried to give fair warning to abort lengthy calculations before they start. The actual time 
predictions will be off, as they are machine dependent.

For detailed instructions, see the sections:

Calculating I(q) for Arbitrary Shapes
USANS from Real-Space Structures

Testing of the FFT of Core-Shell Spheres
Testing of FFT With Different Solvent SLD
Verification of FFT Scaling
FFT of Concentrated Hard Spheres
Connected Rods
Filling Lattice Shapes
Slicing the 3D FFT to 2D
Debye Spheres as a Fit Function
Multiple Oriented Cylinders
Transposing the Matrix
Input Matrix Format

(other examples as I add them to the Macros Menu)

• Calculating I(q) for Arbitrary Shapes
Updated 6 JAN 2011 SRK

Calculation of the scattered intensity for arbitrary shapes can be done by one of two common 
methods. Both of these methods have been implemented, and each has particular 
advantages.

[1] Debye's method of spheres
[2] The "cube" method

In each method, a volume is defined and subdivided up into N x N x N cubes of equal edge 
length T. A two scattering length density material is defined by either a filled or empty voxel. 



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 2
In general, within the limits of computing power and matrix size, N should be as large as 
possible and T should be as small as possible.

The most time consuming step to calculate I(q) from either method is the construction of the 
object. Only simple algorithms have been implemented so far in order to demonstrate the 
validity of the method. 

[1] The sphere method
In this method, the structure is defined in the volume as filled spheres at the center of cubes 
in a matrix of empty cubes. The primary spheres have the same volume as the voxel, meaning 
that adjacent spheres overlap. The scattering is calculated as a double sum of the filled voxels 
only, with calculation of all of the relative distances. The time-consuming step is the double 
summation.

There are three versions:

DebyeSpheresX: this version uses the full double sum, and can make use of the SLD 
information, if available. It's XOPed and multithreaded, and that's about as good as it gets for 
a simplistic calculation like this. It's correct and it's the slowest calculation around. Only use 
this if you really don't believe any of the other calculations.
- (Do Debye Spheres) button
- Output is ival_full vs qval_full

CalcIQRfromMat_bin: this version used discretized bins for the distances. Implicitly in this is the 
assumption that all primary spheres are the same size, and the same SLD. These assumptions 
make the calculations much faster. The double loops in the calculations have been XOPed for 
speed.
- (Do Binned Debye) button.
- Output is ival_XOP vs. qval_XOP.

CalcIQRfromMat_bin_SLD: this version used discretized bins for the distances. This version, 
however, allows for the spheres to have different SLDs. These assumptions make the 
calculations faster than the full double sum, but slower than the binned version where all SLDs 
are the same. The double loops in the calculations have been XOPed for speed.
- (Do Binned SLD) button.
- Output is ival_SLD vs. qval_SLD.

Pros: You pick the number of q-points and the exact q-range you want
The calculation time is directly proportional to the number of q-points
Can be used as a fitting function if carefully defined.

Cons: For a given N, the total computation time actually depends most strongly on the 
number of spheres that make up the defined structure.

The orientational average is done by the calculation over the entire volume - no 
anisotropic information can be derived. 

References:



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 3
The Simple Debye Spheres calculation is the classic formual of Debye. The distance binned 
versions make use of the works of O. Glatter and of E. Pantos. Specifically, the binned method 
where there are different SLDs uses the reference:

E. Pantos, H. F. van Garderen, P. A. J. Hilbers, T. P. M. Beelen, R. A. van Santen, J. Molec. 
Struct. 383 (1996) 303-308.

E. Pantos and J. Bordas, Pure & Applied Chem. 66 (1994) 77-82.

The FFT method is based on the following references:

I. S. Barnes, T. Zemb, J. Appl. Cryst. 21 (1988) 373-379. See also K. Rohr.

[2] The cube method

In this method, the structure is defined in the volume as filled cubes in a matrix of empty 
cubes. The scattering in q-space is obtained directly as a 3D FFT of the volume. The 
magnitude of the real portion of the result is I(q). The time-consuming step is the binning of 
the 3D FFT result into 1-D.

Pros: For a given N, the total computation time does not depend on the defined 
structure.

It is possible to compute directional I(q) since the FFT result is 3D and is averaged 
to get to 1D data.

The method is intuitive, makes use of optimized FFT libraries.

Cons: The q-range, resolution, and number of q-points is completely defined by the 
choice of N and T. 

N sets the number of points
T sets the Q range
Q: ranges from 0 to 2Pi/T
Delta Q = Pi/NT
(Q > Pi/T is NOT to be trusted since it's the size of an individual cube)

To Use:
The necessary procedures are automatically included. The generic steps are as follows:

1) Macros -> "Load Real Space Modeling" will load all of the necessary procedures and 
initialize the main panel.



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 4

2) Set the parameters of the defining matrix
N is the number of cells in the overall cube (N x N x N) (128x128x128 is the default)
T (in Angstroms) is the physical size of each of the cells (voxels)
Qmax and deltaQ are calculated values that will result from the FFT method
FFT time is only an estimate of the time required, varying as the cube of N.

3) [Make Matrix]
mat is the 3D (byte) matrix of empty/filled (0/1/2/etc.) voxels that define the structure. 

Note that "empty" = "solvent" and does not need to be 0. Other SLDs can take on different 
values than 1 as well.  The default for the matrix isto be initially filled with a "solvent" of SLD 
= 0 x 10^-7 (1/A^2). If you want something else, you'll need to enter the value and click 



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 5
[Solvent Matrix]. This will obliterate everything you've drawn, so be sure to do this step first. 
Since the multiplier is 10^-7, a value of 63 would be "D2O" as a solvent.

4) [Make Gizmo]
This brings up a 3D plot of the matrix. The box defines the volume. The incident neutron 

beam is in the -x direction, with the detector in the YZ plane with Z up and Y to the right. 
With the Gizmo plot on top, from the Gizmo menu, choose "Get Info" to adjust the plot, or 
other options available. Most commonly you'll want to adjust what voxels are visible. To do 
this, double-click on "voxelgram0". Here, you can set the size of the points that represent 
each voxel and up to 5 different discrete values that will be shown. The alpha value controls 
the transparency. Typical values are less than 0.3

5) Draw something

[Draw Sphere]
Use the wave "mat", and give the real radius and xyz position. Set the SLD value as a 1- 

or 2-digit integer (it wil be multiplied by 10^-7). Note that the values can be negative too. 
Setting the value equal to the solvent is equivalent to "erasing" the object, or part of the 
object.

[Draw Cylinder]
Same idea, just for a cylinder oriented along one of the primary axes.

[Rotate Matrix]
Rotates the matrix by the specified amount around the z-axis. If you have something very 

large, it may be clipped due to the rotation. The rotated object may be somewhat fuzzy as 
well due to the mis-registration of the object off of the grid.

[Transpose Matrix]
Transforms the matrix XYZ to any of the other permutations. Good if you've drawn an 

object and want to see how the 2D scattering would look with a different incident neutron 
view of your object. See Transposing the Matrix

6) Calculate
[Do FFT] or [Do DebyeSpheres] or [Do Binned Debye] or [Do Binned SLD]

7) Plot
[Plot FFT Results] or [Plot Debye Results] or [Plot Binned Results] or [Plot SLD Results]

8) Or plot the results in 2D with [Get 2D slice]. This will show a 2D slice of the data in the 
detector plane in both log scale and linear scale. There is also a 1D representation where the 
slice only is averaged, not the full 3D FFT (so there is no orientational average of the 
structure). Remember that the direction of the beam is in the (-)x-direction. The detector is 
in the YZ plane (Z vertical, Y to the right). [Interp 2D] will interpolate the 2D FFT to match 
the q-range of a 2D data set that you have already loaded. Currently this can only be used for 
visualization purposes.



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 6
9) Back at the top of the panel there are [Save] and [Load] and [Add] buttons. These allow 
you to save the matrix that you've drawn - since sometimes it can be very time-consuming to 
draw it, and then re-load the matrix back in for display and re-calculation. Load will wipe out 
what's there, Add will add the two matrices together.

Other items on the Macros menu:

- The initialization is done automatically when these procedures are loaded, but you may re-
initialize if you wish to reset to default values.

------

The "Matrix Info":
- Number of Points:  The number of spheres or voxels that are occupied with something other 
than solvent. Also reports the fractional occupation (= volume fraction) and the overall size 
of the bounding box. Also reported is a list of the different SLD values that are present in the 
matrix (quite useful to use in the Gizmo voxel display list).
- Center-to-center: A simple calculation given an input number of points (or spheres) in the 
current box, the calculation returns the average center to center separation of the points if 
they were equally distributed thoroughout the volume.
- Davg_to_Np: This is the reverse calculation as C-to-C. The separation is input, and the 
required number of particles is returned.

---------



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 7

- Polydisperse Spheres: Calculates the scattering from concentrated spheres. The number, 
radius, polydispersity care all input. The fill/calculation is repeated nPass times and the results 
are averaged. See FFT of Concentrated Hard Spheres

- Connect Dots 3D: A number of points (nodes) are placed either randomly or using a Sobol 
sequence. Then the points are connected with a  single voxel thickness, up to the 
connectivity number. See Connected Rods

- Put Random Cylinders at Points: A number of points (nodes) are placed either randomly or 
using a Sobol sequence. Then each point becomes the center of a cylinder of the specified 
length (of voxels). The cylinders are 1 voxel in diameter and are randomly oriented. Periodic 
boundaries are allowed.

- Put X-axis Cylinders at Points:
- Put X-axis Cylinders Square Grid:
- Put X-axis Cylinders Hexagonal Grid:
- Core-shell Cylinders Hex Grid: These four routines fill the volume with cylinders 
where the cylinders are oriented parallel, along the x-axis. The number of cylinders, their 
length, radius, etc. can be specified. The The macros use different grids as noted. See Filling 
Lattice Shapes



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 8
- Animated slices: shows a loop of 2D images lsicing through the volume.

----------

- Nothing here yet, but this section will have some examples of how you can write procedures 
to step through and save lengthy calculations that can run for many hours.

-----------------------------

• USANS from Real-space Structures

Nov 2013

These instructions show the steps necessary to generate a real space structure and 
convert it to a 1D slit-smeared USANS representation. For structures that have an 
analytical function, that represenetation can be used directly with UCALC and is the 
better choice. But for non-regular structures, or for anisotropic structures, real space 
modeling is a viable technique. USANS is unique in the very sharp resolution in the x-
direction (horizontal) and extremely poor resolution in the y-direction. (Note that in the 
"Gizmo" plot of the real space structure, the detector plane is y-z, and the beam is in the 
x-direction. Sorry. Different "standard conventions".

So the question is - for anisotropic structures, what does the 1D USANS look like?

For SANS, no resolution smearing is done for any of the real space calculations. (It's just 
not worth it, and until someone convinces me that it's necessary, it won't be done.)

Setup:
Setup for these calculations is no different than usual, other than being sure to set N and 
T large enough to make the box large enough for USANS. The goal is to get the deltaQ 
small enough to approximate the dQ of the USANS instrument.

N=256 and T=500 is about the smallest you can choose: 256 x 500 = 128,000 Å = 12.8 
microns per box side. Configurations with dQ closer to 1e-5 (1/A) are better.



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 9
N T (A) Box(um) Qmax(1/A) dQ(FFT) (1/A)
256 500 12.8 0.0063 2.4e-5
256 1000 25.6 0.0031 1.2e-5
400 500 20 0.0063 1.6e-5

If the box is too small, you'll be warned and not allowed to proceed. Once you've got the 
real space structure set to what you want (remember that you can use multiple SLDs): 
you can calculate the USANS intensity using the buttons on the FFT_Panel:

Iso to USANS
or
Aniso to USANS

Isotropic - output is FFT_iUSANS_i vs FFT_iUSANS_q. In 2D, the isotropic output is avg2D 
and logAvg2D arrays. Use this when you want to orientationally average the real space 
structure and see what USANS would measure.
Anisotropic - output is FFT_aUSANS_i vs FFT_aUSANS_q. In 2D, the anisotropic output is 
the detPlane and logP arrays, as generated by the "Get 2D Slice" button. Use this when 
you have an oriented sample and want to see what USANS would measure. Note again 
that the beam direction is (-x) and you're seeing the scattering in the YZ plane as defined 
by the axes on the Gizmo plot. USANS then has good resolution in the "Y" direction and 
no resolution in the "Z" direction.
"USANS_Half" is a data folder containing a representation of the +x "half" of a 2D 
detector with deltaQ equal to the USANS resolution in that direction. Then the columns 
are simply summed to generate the USANS slit-smeared data, which is essentially what is 
happening in a USANS experiment.

These macros will go through all of the steps of calculating the FFT of the structure, and 
then calculating the appropriate USANS smeared intensity. The 2D representations of the 
calculation will be automatically displayed along with "iBin", which is the pinhole SANS 
result for comparison.

Examples:

Sphere - to show that the calculation works, and yes, it does:
Using N=400 and T=500, and drawing a sphere of R=10,000 A



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 10

Both the anisotropic and isotropic USANS calculations were done, and are identical to the 
analytical USANS smearing of the sphere model. iBin is the unsmeared sphere calculation. 
The isotropic and anisotropic detector planes are identical, so only one is shown.

Cylinder - a single cylinder to show that the anisotropic representation is different 
than the isotropic calculation and that the isotropic calculation matches the analytic 
calculation.
(the isotropic version is important so that say, non-analytic structures in "solution" can be 
converted to slit-smeared USANS data)

Using N=400, T=500 and a cylinder of R=5,000 A and L=25,000 A oriented along the x-
direction (the beam is in the x-direction, so this is "end-on" into the beam). And the 
results are:



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 11



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 12

If the cylinder is oriented along the y-direction (crosswise to the beam):



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 13

Now the isotropically averaged USANS is unchanged, but the anisotropic data has fringes 
on a longer length scale as a result of the longer length of the cylinder now pointing in the 
horizontal direction where the USANS resolution is best.

if the cylinder is oriented 30 degrees to the beam:



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 14



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 15

Hexagonal rods + rotations - to show what the smeared representation looks 
like - to show the effect of the rotation angle on the peak locations in I(q). Somewhat 
unexpected results, at least until you stop and think for a few minutes. Can I compare this 
to a paracrystalline model? Since it's cylinders, does the HCP spacing for spheres apply?

Using N=256, T=1000, make a hexagonal array of cylinders of R=5000, L=50,000, and 
center-to-center separation of d=15,000 Å

Aligned end-on into the beam:



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 16



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 17

Rotated 30 degrees WRT detector plane: 

( = 30 degree rotation around the x-axis)



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 18



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 19

Now again, the isotropic data is unchanged, but the anisotrpoic data shows peaks that are 
not in the expected locations - but rather odd locations since the detector "sees" vertical 
"strips" of the scattering.

Plotting the 1D results for the anisotropic and isotropic cases highlight how the hexagonal 
peaks "move" when the grid is rotated. The full, isotropic (unsmeared) result is also 
plotted, showing that the rotation has no effect on the result. For the isotropic USANS 
result, the result is that there is no difference for the different rotations. The 30 degree 
rotation is slightly lower in intensity since some of the cylinders have been clipped, 
lowering the occupancy.



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 20



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 21

Peak positions - as read directly from the graph. I haven't indexed the peaks, but it is clear 
that for the oriented sample that there are extra peaks that show up at different locations 
than the isotropic scattering, and most importantly, a peak (or two) appear at lower q 
values than the "primary" Qo position. This could lead to some very confusing 
interpretation if the first peak is, say, interpreted as a shift to lower Q of the primary peak 
of the hexagonal structure.



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 22
---------------

• Testing of the FFT of Core-Shell Spheres
Testing routines are in FFT_vs_N_Tests.ipf
(as of Jan 2011)

Calculate both the FFT and the model calculation of core-shell spheres in 1D.

Cases:
Scale = Occupied volume fraction
R = 50 A
t = 30 A (so the outer radius is 50+30=80 A
bkg = 0

core SLD 0 1 1 2 3 3 3
shell SLD 1 2 3 1 1 3 -1
solvent SLD 0 0 0 0 0 0 0
fileLabel 1 2 3 4 5 6 7

FFT_N = 128
FFT_T = 5 A

phi = 0.00814 (and is the same for all except #1)
phi = 0.00615 (for case #1)

files are labeled ywave_CSS_x (for the model)
files are labeled iBin_CSS_x (for the FFT)

The "fast" Debye method cannot be used for these cases since it is under the assumption of 
a single SLD. The longer, full calculation can be done. The Debye calculation is scaled to a 
volume fraction of one, so multiplying by the volume fraction gives the correct result. The full 
debye calculation is shown for case #7 only. Note that for the 128^3 FFT, the time required 
= 1 second, while the full Debye calculation requires 140 seconds (using all 4 processors).

For case #1: The FFT is 33% higher due to the FFT only counting the shell as part of the 
volume fraction, while the model calculation counts based on the total radius. This leads to a 
different number density, but is easily corrected for in practice.



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 23

Case #2:



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 24

Case #3:



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 25

Case #4:



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 26

Case #5:



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 27

Case #6:



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 28

Case #7:



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 29

• Testing of FFT With Different Solvent SLD
Testing routines are in FFT_vs_N_Tests.ipf
(as of Jan 2011)

Calculate both the FFT and the model calculation of core-shell spheres in 1D. Change the 
solvent SLD to be sure that scaling, both relative and absolute, is correct. Core and shell are 
kept at the same SLD for the first set of tests, so it is as a sphere.

For all FFT calculations:
FFT_T = 5 A



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 30
Cases:

Scale = Occupied volume fraction
R = 50 A
t = 30 A (so the outer radius is 50+30=80 A
bkg = 0

core SLD 1 2 2
shell SLD 1 2 2
solvent SLD 0 1 1
fileLabel 1 2 3
FFT_N 128 128 64

And a second set where the SLD multiplier is 10^-7, meaning that 2 digits are used for the 
voxels, rather than just one. Note that 3 digits can't be used since the matrix is byte. Here 
the core and shell SLDs are different, enabling more complex patterns to be calculated.

root:FFT_delRho = 1e-7 //multiplier for SLD

core SLD 32
shell SLD -10
solvent SLD 0
fileLabel 4
FFT_N 128

files are labeled ywave_Solv_x (for the model)
files are labeled iBin_Solv_x (for the FFT)

The "fast" Debye method cannot be used for these cases since it is under the assumption of 
a single SLD. The longer, full calculation can be done. The Debye calculation is scaled to a 
volume fraction of one, so multiplying by the volume fraction gives the correct result. The full 
debye calculation is shown for case #7 only. Note that for the 128^3 FFT, the time required 
= 1 second, while the full Debye calculation requires 140 seconds (using all 4 processors).

Cases 1,2,3 all have the same absolute intensity, as they should:

Case #1:



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 31

Case #2: 



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 32

Case #3:



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 33

And case #4 correctly calculates the scattering for the odd contrast case where there is a 
peak in the core-shell scattering:



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 34

• Verification of FFT Scaling

24 JAN 2011

**************
I(q) [cm^-1] = (FFT result) * phi *(1/Vp)* (1e-6)^2*(1e8)*Tedge^6
**************
phi = (number of occupied voxels) / Nside^3
1/Vp = 1/(total particle volume) = 1/(number occupied * Tedge^3)
The number of occupied voxels is everything that is not solvent.
The (1e-6)^2 factor converts the single digit of voxel SLD to correct units.
The 1e8 factor converts the units of (1/A) to (1/cm)
Tedge^6 accounts for the volume fer voxel, squared.

So it reduces down to:
I(q) [cm^-1] = (FFT result) * (1e-6)^2*(1e8)*(Tedge/Nside)^3

Nside is the number of cells per edge
Tedge is the size per voxel edge



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 35
Using this scaling of the FFT result, the values are scaled to the volume fraction of particles 
present - the Debye method scales the data to a volume fraction of one. The case below is 
for:

The FFT parameters are Nside = 180, Tedge = 5.7, and an 80 A radius sphere (np = 11557). 
Even with these non-standard FFT parameters, the scaling is correct.

• FFT of Concentrated Hard Spheres



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 36
JAN 2011

1) FFT of randomly placed spheres are repeated multiple times and averaged to identify a 
reasonable number of passes needed.

2) Spheres are placed in a volume based on the simple critera of no overlap between spheres. 

N=128
T=5 A
R sphere = 20 A
no polydispersity
then re-run with 25% polydispersity

The matrix was filled randomly and the FFT performed. The erase/fill/FFT was repeated 20 
times and the results were averaged.

20 passes was chosen as a compromise of quality and speed. The results below are for a 
volume fraction of 0.1% (only 10 spheres) and the number of passes as shown in the legend 
(5, 10, 20, 50, or 100). The second graph is a zoom in of the low q region. It is expected 
that the higher concentrations would have a similar smoothing as a function of the number of 
passes. Error bars are calculated in the usual way, averaging over the number of passes. 

For each of the cases, below is the averaged data and an image of the voxelgram, giving an 
idea of the occupancy at each of the different volume fractions. Each is a representative 
snapshot of a possible structure at that concentration.



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 37



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 38

-------------------------------------
Results for the concentrated spheres

The model calculations are for hard spheres at the volume fraction as calculated by the 
sphere occupancy. Error bars are only shown on one set per graph. They become qhite small 
after even just a few averaging passes.



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 39



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 40



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 41

Calculating versus the Polydisperse Hard Sphere model, using the volume fraction of spheres 
as simulated. The polydispersity is set to pd = 0.001

Phi = 0.012
Phi = 0.024
Phi = 0.036
Phi = 0.041



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 42

Phi = 0.070
Phi = 0.094
Phi = 0.141
Phi = 0.188



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 43

Phi = 0.233
Phi = 0.299
Phi = 0.366



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 44

And the representative snapshots of the filled matrix are:

Phi = 0.012



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 45

Phi = 0.024



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 46

Phi = 0.036



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 47

Phi = 0.041



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 48

Phi = 0.070



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 49

Phi = 0.094



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 50

Phi = 0.141



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 51

Phi = 0.188



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 52

Phi = 0.233



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 53

Phi = 0.299



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 54

Phi = 0.366



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 55

------------------------------------------------------------------------------------------------------------------------
----------

Polydispersity of 25% in the sphere radius:

This may not translate terribly well, since the radius is 20 and the edge is 5, so there are not 
very many voxels per sphere, but I expect that there enough variation in the sphere radius to 
show the proper effects in the final FFT result, especially when averaging over multiple 
configurations.

One discrepancy that showed up in one of the first attempts is that the polydisperse volume 
fraction is lower than the monodisperse volume fraction for the same number of spheres. This 
was almost certainly a deficiency in the algoroithm that places the spheres. When the box is 
starting to get full - the larger spheres in the distribtution are more likely to "fail" on 
placement. Then the algorithm picks a new trial location, and a new sphere radius.

Model calculations here are for the volume fraction as calculated from the occupancy, using 
the exact polydisperse hard sphere model calculation of Griffiths. Note that the calculation of 



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 56
Griffiths uses Schulz polydispersity, which should not be too much different than a Gaussian 
polydispersity of 25%.

The updated algorithm that is "Better" at placing the spheres now continues to try to fit a 
sphere in by choosing a new point, keeping the same radius, rather than discarding it. Even 
so, at high volume fractions (> 0.2), a larger radius trial will frequently fail more than 1000x. 
At this point, the radius is skipped (and the sphere too). The actual number of spheres placed 
is corrected in the wave note.

The Gaussian polydispersity has a correction factor of 1+3p^2 on the average volume. for 
p=0.25, 1+3p^2 = 1.187. So the number of spheres that need to be placed is somewhat 
smaller for the polydisperse case, as calculated below:



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 57



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 58



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 59

Calculating versus the Polydisperse Hard Sphere model, using the volume fraction of spheres 
as simulated. The polydispersity is set to pd = 0.25

Phi = 0.015
Phi = 0.029
Phi = 0.042
Phi = 0.051



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 60

Phi = 0.078
Phi = 0.107
Phi = 0.148
Phi = 0.185



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 61

Phi = 0.218
Phi = 0.255
Phi = 0.29



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 62

The lowest concentration set appears to be very good at both high and low q-values. Zooming 
in on the higher concentrations at the low q region shows where the FFT is missing 
something, and unable to reproduce the exact calculation. This may be due to the increasing 
skew towards smaller radius particles as the fill becomes more crowded. But the FFT is quite 
good overall.



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 63



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 64

And representative snapshots of the filled matrix are:

Phi = 0.011



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 65

Phi = 0.022



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 66

Phi = 0.036



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 67

Phi = 0.041



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 68

Phi = 0.073



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 69

Phi = 0.099



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 70

Phi = 0.145



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 71

Phi = 0.192



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 72

Phi = 0.238



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 73

Phi = 0.301



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 74

Phi = 0.350



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 75

• Connected Rods

14 JAN 2011

For this calculation, random points, or nodes, are selected in the box. Then based on Voronoi 
Tesselation the nodes are connected. No periodic boundary conditions are used. Two different 
methods of generating the nodes in the initial box are used.

1) Igor's random number generator, enoise()
2) NR's implementation of a Sobol sequence, as an XOP. Note that this is a "quasi-random" 
number generator that more efficiently fills N-dimensional space with points.

Other conditions:

1) The cylinder connecting the nodes can be the same diameter as the edge dimension, good 



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 76
for representing a larger network structure
2) the cylinder radius can be larger than the edge dimension, giving a more accurate picture 
of the local cylindrical structure
3) The cylinder can be polydisperse in radius, making it more realistic. Polydispersity in the 
length is already taken into account in the random nature of the node generation.

Things to think about:
1) Proper polydispersity of the radius. Look to the results from the polydisperse spheres for 
how it needs to be done.
2) How can I predict the volume fraction based on N, T, Diam, and nNodes? This is very 
important to be able to compare results to experimental data and to be able to join two q-
ranges.
3) How can I put periodic conditions back in? Is it really necessary?
4) What are the artifacts coming from the overall dimensions of the box? Is there a "big 
cube" scattering from this, and how can I get rid of this?

In these calculations, boxes of different scale and different numbers of nodes have been 
calculated, so that the different q-ranges can be merged to give a broader q-range. 
Polydispersity of the radius has not been implemented yet.

Conditions:
Real Cylinder radius = 20 A
N=256
T= 40
(nodes)
(40,100,200,300,400,500)

N=256
T=5
(nodes)
(40,100,200,300,400,500) = (very high volume fractions)
(6,7,9,10,20,30) = (more reasonable volume fractions)

These sets of calculations have been repeated twice, once with each random number 
generator. This gives a total of 24 data files.

Files are:
iBin_CRa intensity
qBin_CRa q values
eBin_CRa error
p_connRod_a 2D wave of image of Gizmo

There is a wave note on the intensity with the conditions used, most notably the volume 
fraction occupied. This must be matched between the two q-ranges. I didn't see any quick 
calculation that would predict the number of nodes in each range needed for an equivalent 
volume fraction, but I might be able to find an average relation. The random nature of the fills 



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 77
should come out in the wash by averaging enough replicate fills.

Pairs of files to plot together:
Sobol
0.0068 (e) and 0.0062 (gg)



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 78
0.0080 (f) and 0.0082 (hh)

enoise
0.0065 (q) and 0.0063 (ss)
0.0076 (r) and 0.0082 (tt)



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 79



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 80

and plotting the high Q and low Q together show the Sobol-generated data to be a little bit 
noisier. Plus, the enoise-generated structure seems to be larger at low Q. And I really don't 
have any idea why this would be the case.



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 81

And the respective plots of the cylinder fills:
(e = Sobol) 



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 82

(q = enoise)



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 83
and (gg = Sobol)

(ss = enoise)



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 84

-------------------------

These are the sobol plotted together, and enoise plotted together. What do these graphs 
say?

not much here...



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 85

An interesting change in the inflection in the figure below as the volume fraction increases. 
There must be something here. A change in the average distance between nodes reflected 
here (shorter distance as the concentration, so the inflection moves to larger Q)



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 86

Nothing here, really.



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 87
Do I see the shift in inflection in the figure below? Or is it the wrong length scale?

------------------------------------------

• Filling Lattice Shapes

2 MAR 2011 

Procedures have been added that allow filling of shapes on a rectangular or hexagonal lattice. 
What is currently available are functions for placing parallel cylinders in the x-direction of the 
matrix, which is equivalent to the incident beam direction in the FFT.

How they work:
At the central YZ plane of the matrix, N points are placed in the plane in the specified fill 

pattern. Then cylinders of a specified length, radius, and center-to-center spacing are drawn 
at each of the N points. In these procedures, cylinders are drawn in the x-direction. If the list 
of N fill points are kept intact, then core-shell objects are a trivial extension to draw.

Three fills are provided:
Random (either enoise or Sobol)
Rectangular
Hexagonal

Still to do:
- verify the spot appearance/disappearance as the x-cylinders are rotated off of the beam 



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 88
axis (around Z)

- verify the transformed matrix FFT (parallel to Y and Z)
- add additional planes of points so that fills of spheres can be done to generate SC, HCP, 

BCC
- introduce some amount of angular disorder in the rods that are placed, and 

polydispersity of the cylinder radius.
- verify the peaks of the lattice. Be sure that the 2D lattice of cylinders really gives the 

sqrt 3/5/7/... spacing as the full HCP lattice gives. Also, be sure that the underlying cylinder 
form factor is not affecting the peaks (and it likely is)

So a simple verification of the hexagonal calculation is shown below. The ctc distance is 80 A, 
so the hexagonal peaks are expected to be at:
2*pi/80 = 0.0785 1/Å
q*sqrt(3) = 0.136
q*sqrt(5) = 0.175
q*sqrt(7) = 0.207

And the FFT or Debye calculation gives:
q1 = 0.0908 1/Å
q2 = 0.157
q3 = 0.238
q4 = 0.271

-- this corresponds to a spacing of 69 Å, and if so, the sqrt(5) peak is missing (should be at 
0.203 1/Å). So some tweaking need to be done.

The core-shell cylinders give a different

----------

PutXAxisCylindersHexagonal("mat",30,300,80)
(fill = 1)
  Number of points =   379680
  Fraction occupied =   0.181046
  Overall Cube Edge [A] =   640



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 89

Core-shell cylinders:

30 A radius cylinders, fill = 1
then 20 A radius cylinders, fill = 3
(matrix = 0)



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 90



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 91

• Slicing the 3D FFT to 2D

This set of macros is to verify the operation of the 2D FFT and slicing by calculating both the 
FFT and the model calculation of a cylinder in 2D. If everything is working, then the 2D image 
that is calculated, and the 2D slice of the FFT result should match up.

Then in the 2nd part, the 2D slice of the FFT is interpoated to match the experimental QxQy 
data points.

1) Comparing the slices to model calculatons

In this, the matrix was set to:

N = 128
T = 5 
Solvent SLD = 0

For the 2D cylinder model:
"fake2DData"
128x128 detector, -0.64,0.64 limits on the q-range



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 92
Scale = 1
R = 40 A
L = 400 A

cyl SLD1
solvent SLD 0

bkg = 0

(theta)
(phi) changed as needed

files are labeled ywave_Cyl2D_a (for the model)
files are labeled iBin_Cyl2D_a (for the FFT)
files are labeled Cyl2D_mat_a (for the model calculation)
files are labeled logP_Cyl2D_a (for the detector slice of the FFT)

And the results....

Case 1:
Cylinder is lined up in the X direction as defined in the voxelgram, which is "end-on" or the Z 
direction as defined in experimental instrument coordinates. The result is symmetric, as 
expected. See case 4 for an explanation of the "pretty" FFT pattern.

-Model- -FFT-

Case 2:
Cylinder is lined up in the Y direction as defined in the voxelgram, which is horizontal or the X 
direction as defined in experimental instrument coordinates.

-Model- -FFT-



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 93

Case 3:
Cylinder is lined up in the Z direction as defined in the voxelgram, which is horizontal or the Y 
direction as defined in experimental instrument coordinates. Finer spacing of fringes in the 
vertical directon, the direction of the larger dimension.

-Model- -FFT-

Case 4:
The same as case 1, but using a smaller "T"(T = 2 A) to get a smoother calculation. The 
"lumpiness" of the case 1 calculation is due to the gridding of the spheres looking end-on. 
Making things on a smaller grid smooths things out by having more spheres. Somewhat 
counterintuitive since they are still on a grid and there are more of them, but it is what it is. 
For the display, the FFT image has the q-range rescaled to -0.64,0.64, zooming in one the 
same q-range as the model calculation. Makes for a more pixelated image, but is identical.

-Model- -FFT-



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 94

Case 5:
Direction is 45 degrees, with the cylinder in the detector plane, (XY as defined by detector, 
YZ as defined in the voxelgram)
Using ChangeAngle(90,45) defines the direction
theta = 1.5708
phi = 0.785

-Front- -Top-

The voxelgram is generated by:
drawing a cylinder in the X-direction
rotating 45 degrees around Z
then transforming XYZ->ZYX

-Model- -FFT-



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 95

Case 6:
Direction is 45 degrees, with the cylinder in the horizontal plane, (ZX as defined by detector, 
XY as defined in the voxelgram)
Using ChangeAngle(45,0) defines the direction
theta = 0.785
phi = 0

-Front- -Top-

The voxelgram is generated by:
drawing a cylinder in the X-direction
rotating 45 degrees around Z

-Model- -FFT-



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 96

The FFT pattern could be improved in quality by using a finer grid, as in the end-on case.

-Jan 10, 2011 SRK

2) Interpolating the FFT Slice to Match Experimental Data

Here, we can simply take the FFT slice and use its data scaling for the Qx and Qy values, since 
these naturally fall out from the FFT scaling. Then it is a simple (one-liner) to interpolate the 
slice to match the QxQy scaling of the linear data matrix "_lin". The images can be compared, 
or the surfaces (Gizmo), or the interpolated surface could be used as a 2D fit function with 
proper wrapping.

So for a case of a cylinder:
R = 100
L = 200
SLD Cyl = 1e-6
SLD solv = 6e-6

theta = 1.57
phi = 0
 = the cylinder is horizontal, pointing along detector X (=FFT Y)

Two experimental 2D data sets are used, SILIC009 (high Q, offset) and SILIC010 (low Q, on-
center)

Here, T=6 and N=256 were chosen. These give Qmax = 0.52, and deltaQ = 0.0020 (1/A) 
These are reasonable values, giving a fine enough grid to interpolate. Data displayed is in log-
scaling of intensity to show the details

So for low q, on-center (SILIC010_DAT):



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 97
The FFT Detector slice Axes scaled to SILIC010 values

Interpolated Slice Cyl_2D model for 
SILIC010_DAT

The pixelation of the useful range of the FFT slice depends on the choice of N and T. Selection 
guides will need to be developed for that as needed. For these parameters, there is enough in 
the FFT result to give a good interpolation, that is in excellent qualitative, and good 
quantitative agreement with the model calculation. Note that the vertical scaling of the FFT 
slice is WAY off (~ x10^5 too high). That will need to be fixed.

Then for high q, off-center (SILIC009_DAT):
We start with the same FFT result. It's the same structure, and we have enough q-range from 
the FFT. So there is no need to recalculate the FFT at all.

The FFT Detector slice Axes scaled to SILIC010 values



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 98

Interpolated Slice Cyl_2D model for 
SILIC010_DAT

More complex examples could be generated, but these two test cases are sufficient to show 
what can be done with the 2D slice from the FFT.

Some comments:

- A "reasonable" match of the delta Q of the data and FFT is best for the interpolation, if 
possible.
- Increase T to get a smaller delta Q (but you lose the fine detail of the structure)
- Increase N to get more points in the final I(Q) to interpolate (but the calculation slows as 
N^3)

There is distortion visible as curved bands (the P(Q) minimum) in the FFT for the highest 
q-values. This is an effect of forcing QxQy onto an evenly-spaced grid, which is only "true 



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 99
enough" at the lowest q-values where the small-angle approximation is good, and Qz cana 
safely be ignored. Plotting the intensity as a function of Qx and Qy shows how the QxQy 
surface measured is not a flat, evenly gridded plane. For the comparison of models to data on 
a surface, this is of no consequence since the surface display is just for viewing, and the fact 
that both data and model suffer from the same (minor) distortion by displaying them on the 
same grid. But beware of other calculations and comparisons. Be sure QxQyQz is not 
forgotten.

FFT slice Qy vs. Qx plot

• Debye Spheres as a Fit Function

Defining the sphere structure as a filled matrix with a spherical structure gives a fit function 
that behaves as a normal fit function. Ignore the FFT tag, the calculation is Debye Spheres 
with a binned distance.

Depending the number of spheres in the calculation, it can be rather slow as expected. The 
calculations here use the binned distance method since there is only one SLD (different than 
solvent).

The smeared calculation works too, but is beastly slow, much more so than the expected 20x 
slower for 20 gauss points. Timing is yet to be verified, then speedup can be targeted if it's 
ever important.
-- Updated 7 MAR 2011 --

The resolution smearing has been rewritten to be done in an AAO fashion. A vector of 
Nq*nord abcissa are passed to the function AAO, and then summed back into the Nq points 
after the smearing is completed.



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 100
---

The graph below is the analytic sphere form factor, the Debye Spheres calculation (sfFFT), 
and the smeared calculation.

Below is a comparison of the fitted SmearedSphere form factor, and the calculated 
SmearedDebyeSphere fit function. Both are identical. A fit was also done with a smeared 
sphere FFT function, and the results are identical. (see note above. The AAO smeared fit took 
144 s).



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 101

Below is model data (with no resolution smearing) and the fits using the analytic sphere form 
and the Debye Sphere fit function. 



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 102

The results of the fit coefficients are identical, within error. To do the DebyeSphere fit, the 
epsilon value for the sphere radius was set to 6 A. Using epsilon that is too small gives no 
dependence on that discretized parameter. Not surprising, but now I need to define how large 
epsilon needs to be to get a proper gradient in that dimension.

T time(s)Chi^2 R (A)
- 0.5 0.022 55.00 analytic model

2 1643 0.068 54.97
4 171 6.2 54.81
8 21 6.6 54.81
16 101 103 54.15

The time listed is the time for the fit to complete, using the threaded binned calculation, each 
starting from the same guess, constraints, and epsilon (=6 for the radius). The following 
graphs show the results of the fits. Overall, the fits look good, with the quality degrading as T 
starts to get very large. The fit looks crummy at the largest q-values, but what really 
contributes to the large chi-squared is probably the offset of the model at the low q values, 
where the error bars are smaller (artificially generated proportional to the intensity).



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 103
So there's a tradeoff here, as in all aspects of life. Using a relatively large T value, say 1/20 or 
so of the maximum dimension (110 A in this case) gives a reasonable tradeoff between speed 
and accuracy. Too coarse, and speed suffers as the model becomes an inaccurate "voxelated" 
representation of the smooth physical structure. Too fine of a grid, and the calculation is very 
accurate, but the time for the fit can quickly become prohibitive.



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 104



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 105

Still to investigate:
- What is the "optimal" FFT_T?.
- Genetic Optimization. Does this still need some sort of epsilon values set to get the 
parameters to "move"?
- Re-doing some of the filling routines so that they don't need a matrix at all. If the points 
could be filled directly into the XYZRho waves, then there would (potentialy) be a speedup. 
One of the difficulties in filling this way is that there is no convenient way to check for 
overlap, and if there is overlap, duplicate points are written to the XYZRho columns. The I 
need to figure out how to get rid of these.
- Does having the Gizmo window open during the fit slow things down? No, not at all. I've 
done the test.
- I've built a function for cylinders that works just fine, but the optimization is rather fiddly. It 
seems to fail regularly with no dependence on the cylinder length. Now with the sphere 
results, a possibility may be that the small number of points at the lowest q that are sensitive 
to the cylinder length have such a little contribution to the chi-squared compared to the large 
nubmer of points at high q that the optimization sees no dependence, no matter how large of 
a step is taken. I am seeing a huge difference in chi-squared for the sphere.
- Test the cylinder fit as a function of T, to see if there is an optimal value. Or try the cylinder 



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 106
fit with a restricted q-range to determine the two lengths independently, but then a fit of the 
full q-range may still be insensitive to the length.

• Multiple Oriented Cylinders
 FEB 2012 SRK

These procedures for calculating the scattering from multiple cylinders is based on a parsing 
routine written by Ken Rubinson that takes a list of cylinder specifications and parses that 
into a filled matrix suitable for calculation of the scattering pattern.

To start the calculation set N and T from the main FFT panel. This calculation will use either 
the binned distance or binned distance + SLD methods for the calculation rather than the FFT. 
The volume is used to set up the structure.

Macros -> Setup_KR_MultiCylinder opens the following panel:

The FFT_T is set on the main panel
The Qmin / Qmax / Number of points are set here as needed

Each row in the table defines a cylinder, using the columns as follows - apologies for the odd 
notation:

xx = xCtr
yy = yCtr
zz = zCtr
rri = radius (real distance, A)



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 107
hti = cylinder length (A)
rotx = rotation on X (degrees)
roty = rotation on Y (degrees)
sld = SLD (x 1e-7 A^-2)

To Use:

1) Enter in a row of values for the centers of each cylinder, its dimensions, rotation, and SLD. 
Note that the (x,y,z) center can be negative here, and will be rescaled to fit into the 
voxelgram.

2) [Generate Structure] will fill teh voxelgram with the structure as defined. If you use 
multiple SLDs, not all of the structure may be initially visible.

3) [Do Calculation] will actually do the calculation using the binned distance method. [Plot 1D 
will show the result. (ival_KR vs qval_KR)

This is a very simplistic description of the use of this rather complex structure generator and 
the instructions will be augmented in the future as use dictates.

----------------------

As a Fit Function

With any model function based on filling a volume with shapes, the key to turning it into a fit 
function is defining the simplest set of lengths that change to enable the variation in the 
model function that you want (hope) to see. Then these must be translated into a list of 
input parameters.

Using Ken's parsing method and a simplified three-cylinder model, a fit function has been 
written:
FFT_Fit_3Cyl_KR.ipf with the fit function ThreeCylKR()

The fit function uses three cylinders with a simplified geometry.

- the first cylinder is located at (0,0,0)
- the second cylinder is on "top" (Z)
- the third cylinder is on the "bottom" (-Z)

So then from the 10 input parameters and the simple geometric relationship, the "input" 
waves can be generated that Ken's parser is expecting. Then after parsing, the scattering is 
easily calculated. For this calculation, there is only a single SLD, and the diameter of the 
primary spheres is set as the global value FFT_T.

For this simple case, a single calculation using the distance-binned Debye method takes about 
1.2 s, and the smeared calculation 28 s. The unsmeared fit takes approx. 360 s. A smeared 
fit would take at least 2.5 hr. 



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 108
The results of a fit are shown below (epsilon was set to 5 for each of the variables, FFT_T = 
4). The errors are large on the parameters, not due to the Debye method, but simply that the 
parameters are not well-determined. Fitting the data with a simple cylinder model gives large 
errors on the cylinder length. Adding two more cylinders appears to be too many parameters 
for the features in the data. But in principle, the three cylinder fit works very well.

Fit to ThreeCylKR, 2/28/12, 4:05:51 PM

Data file: PlyC_64Na_abs_sub

scale = 0.122796 ± 0.0468415
radius 1 (A) = 27.6482 ± 1.62241
length 1 (A) = 71.649 ± 53.2114
radius 2 (A) = 15.3849 ± 121.757
length 2 (A) = 34 ± 0
radius 3 (A) = 15.6558 ± 159.064
length 3 (A) = 34 ± 0
SLD cylinder (A^-2) = 1e-06 ± 0
SLD solvent (A^-2) = 6e-06 ± 0
incoh. bkg (cm^-1) = 0.00990405 ± 0.000533592
chisq = 175.111
Npnts = 162  Sqrt(X^2/N) = 1.03968
Fitted range = [16,177] = 0.008777 < Q < 0.2685
FitError = No Error FitQuitReason = No Error



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 109

• Transposing the Matrix
 MAR 2012 SRK

Transposing the XYZ coordinates of the structure as drawn provides a quick way of re-
orienting the structure to allow different views of the same structure to be seen in the 
scattering plane when viewing the 2D slice. In this example, cylinders are drawn along the 
positive axes, and the axes transformed to show the results of the transformation. Note that 
the starting condition is where the cylinder colors match the color of the axis arrow.

Initially:



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 110

Initial XYZ -> XZY
swaps Y and Z
changes handedness



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 111

Initial XYZ -> ZXY
swaps all three
no change of handedness



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 112

Initial XYZ -> ZYX
swaps X and Z
changes handedness



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 113

Initial XYZ -> YZX
swaps all three
no change of handedness



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 114

Initial XYZ -> YXZ
swaps X and Y
changes handedness



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 115

--------------------------------

• Input Matrix Format

Generating an Igor-readable text file from a 3D matrix

If you have generated a 3D structure using a different program, you can output your 
structure in an Igor-readable format. What is outlined here is not the most efficient way to 
store the matrix, but the most transparent for generating a simple file.

Each line has a single value (integer, one or two digits ONLY). This is the SLD of the voxel 
(/ 10-7 A-2). That means that for D2O, the proper value is 63. Negative integers are 
allowed for negative SLDs

Igor keeps track of a matrix with normal programming indices, that is the matrix 
dimensions from (0 -> N-1) and are displayed that way. (0,0,0) is at the bottom left 
corner of the box, not at the center. If your box is centered or non-integer locations, 



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 116
you'll need to translate and truncate.

The file structure:

The first three lines:
- keep these the same, except change the 3's to be the number of cells in each direction 
of your matrix. All three dimensions must be equal. Typical dimensions are 128,128,128 
and 256,256,256 but could be larger if needed
- Also on the second line - the matrix is named “mat”. Don't change this.

The values:
- one value per line works fine, starting at (0,y,0), then (1,y,0), etc. After x is exhausted, 
z is incremented and x returns to 0, and y is rastered again. If something is flipped, the 
matrix can always be transposed after loading to get the correct orientation. 

In the 3x3 voxelgram, 10 = green, 20 = red, 30 = blue, and 0 = transparent (the solvent)

The last three lines
Keep these the same, with the exception that you want to set the numerical values in the 
wave note (the last line)
FFT_T=(the individual voxel edge dimension, in Angstroms. Does not need to be an 
integer)
FFT_N=(the number of voxels per edge. This is the same integer as in the matrix 
definition on line 2)
FFT_SolventSLD=(2 digit integer of solvent SLD as defined above)



6/24/16 Real_Space_Modeling_Help_v0.1.ihf 117
Example file Structure:
-------------------

IGOR
WAVES/B/N=(3,3,3) mat
BEGIN
10
20
30
10
20
30
10
20
30
0
0
0
0
0
0
0
0
0
10
10
10
20
20
20
30
30
30
END
X SetScale/P x 0,1,"", mat; SetScale/P y 0,1,"", mat; SetScale/P z 0,1,"", mat; SetScale d 
0,0,"", mat
X Note mat, "FFT_T=5;FFT_N=3;FFT_SolventSLD=0;"

-------------------


